3.536 \(\int \cos ^4(c+d x) (a+b \tan (c+d x))^3 \, dx\)

Optimal. Leaf size=84 \[ \frac{3}{8} a x \left (a^2+b^2\right )-\frac{3 a \cos ^2(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{8 d}+\frac{\sin (c+d x) \cos ^3(c+d x) (a+b \tan (c+d x))^3}{4 d} \]

[Out]

(3*a*(a^2 + b^2)*x)/8 - (3*a*Cos[c + d*x]^2*(b - a*Tan[c + d*x])*(a + b*Tan[c + d*x]))/(8*d) + (Cos[c + d*x]^3
*Sin[c + d*x]*(a + b*Tan[c + d*x])^3)/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0685598, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3506, 729, 723, 203} \[ \frac{3}{8} a x \left (a^2+b^2\right )-\frac{3 a \cos ^2(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{8 d}+\frac{\sin (c+d x) \cos ^3(c+d x) (a+b \tan (c+d x))^3}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*(a + b*Tan[c + d*x])^3,x]

[Out]

(3*a*(a^2 + b^2)*x)/8 - (3*a*Cos[c + d*x]^2*(b - a*Tan[c + d*x])*(a + b*Tan[c + d*x]))/(8*d) + (Cos[c + d*x]^3
*Sin[c + d*x]*(a + b*Tan[c + d*x])^3)/(4*d)

Rule 3506

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[1/(b*f), Subst
[Int[(a + x)^n*(1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && NeQ[a^2 + b
^2, 0] && IntegerQ[m/2]

Rule 729

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^m*(2*c*x)*(a + c*x^2)^(
p + 1))/(4*a*c*(p + 1)), x] - Dist[(m*(2*c*d))/(4*a*c*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1), x],
 x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 3, 0] && LtQ[p, -1]

Rule 723

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(a*e - c*d*x)*(a
 + c*x^2)^(p + 1))/(2*a*c*(p + 1)), x] + Dist[((2*p + 3)*(c*d^2 + a*e^2))/(2*a*c*(p + 1)), Int[(d + e*x)^(m -
2)*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 2, 0] && Lt
Q[p, -1]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cos ^4(c+d x) (a+b \tan (c+d x))^3 \, dx &=\frac{\operatorname{Subst}\left (\int \frac{(a+x)^3}{\left (1+\frac{x^2}{b^2}\right )^3} \, dx,x,b \tan (c+d x)\right )}{b d}\\ &=\frac{\cos ^3(c+d x) \sin (c+d x) (a+b \tan (c+d x))^3}{4 d}+\frac{(3 a) \operatorname{Subst}\left (\int \frac{(a+x)^2}{\left (1+\frac{x^2}{b^2}\right )^2} \, dx,x,b \tan (c+d x)\right )}{4 b d}\\ &=-\frac{3 a \cos ^2(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{8 d}+\frac{\cos ^3(c+d x) \sin (c+d x) (a+b \tan (c+d x))^3}{4 d}+\frac{\left (3 a \left (a^2+b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\frac{x^2}{b^2}} \, dx,x,b \tan (c+d x)\right )}{8 b d}\\ &=\frac{3}{8} a \left (a^2+b^2\right ) x-\frac{3 a \cos ^2(c+d x) (b-a \tan (c+d x)) (a+b \tan (c+d x))}{8 d}+\frac{\cos ^3(c+d x) \sin (c+d x) (a+b \tan (c+d x))^3}{4 d}\\ \end{align*}

Mathematica [B]  time = 3.51926, size = 257, normalized size = 3.06 \[ \frac{2 a b^5 \left (b^2-3 a^2\right ) \tan ^3(c+d x)-24 a^4 b^4 \tan ^2(c+d x)-6 a b^3 \left (3 a^2 b^2+6 a^4+b^4\right ) \tan (c+d x)-3 a \sqrt{-b^2} \left (a^2+b^2\right )^3 \left (\log \left (\sqrt{-b^2}-b \tan (c+d x)\right )-\log \left (\sqrt{-b^2}+b \tan (c+d x)\right )\right )+8 a^2 b^2 \cos ^2(c+d x) (a+b \tan (c+d x))^4+2 a b \left (3 a^2-b^2\right ) \sin (c+d x) \cos (c+d x) (a+b \tan (c+d x))^4+4 b \left (a^2+b^2\right ) (a \tan (c+d x)+b) (a \cos (c+d x)+b \sin (c+d x))^4}{16 b d \left (a^2+b^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*(a + b*Tan[c + d*x])^3,x]

[Out]

(-3*a*Sqrt[-b^2]*(a^2 + b^2)^3*(Log[Sqrt[-b^2] - b*Tan[c + d*x]] - Log[Sqrt[-b^2] + b*Tan[c + d*x]]) - 6*a*b^3
*(6*a^4 + 3*a^2*b^2 + b^4)*Tan[c + d*x] - 24*a^4*b^4*Tan[c + d*x]^2 + 2*a*b^5*(-3*a^2 + b^2)*Tan[c + d*x]^3 +
4*b*(a^2 + b^2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^4*(b + a*Tan[c + d*x]) + 8*a^2*b^2*Cos[c + d*x]^2*(a + b*Tan
[c + d*x])^4 + 2*a*b*(3*a^2 - b^2)*Cos[c + d*x]*Sin[c + d*x]*(a + b*Tan[c + d*x])^4)/(16*b*(a^2 + b^2)^2*d)

________________________________________________________________________________________

Maple [A]  time = 0.071, size = 114, normalized size = 1.4 \begin{align*}{\frac{1}{d} \left ({\frac{{b}^{3} \left ( \sin \left ( dx+c \right ) \right ) ^{4}}{4}}+3\,a{b}^{2} \left ( -1/4\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sin \left ( dx+c \right ) +1/8\,\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) +1/8\,dx+c/8 \right ) -{\frac{3\,b{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{4}}{4}}+{a}^{3} \left ({\frac{\sin \left ( dx+c \right ) }{4} \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{3}+{\frac{3\,\cos \left ( dx+c \right ) }{2}} \right ) }+{\frac{3\,dx}{8}}+{\frac{3\,c}{8}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(a+b*tan(d*x+c))^3,x)

[Out]

1/d*(1/4*b^3*sin(d*x+c)^4+3*a*b^2*(-1/4*cos(d*x+c)^3*sin(d*x+c)+1/8*cos(d*x+c)*sin(d*x+c)+1/8*d*x+1/8*c)-3/4*b
*a^2*cos(d*x+c)^4+a^3*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c))

________________________________________________________________________________________

Maxima [A]  time = 1.77752, size = 149, normalized size = 1.77 \begin{align*} \frac{3 \,{\left (a^{3} + a b^{2}\right )}{\left (d x + c\right )} - \frac{4 \, b^{3} \tan \left (d x + c\right )^{2} - 3 \,{\left (a^{3} + a b^{2}\right )} \tan \left (d x + c\right )^{3} + 6 \, a^{2} b + 2 \, b^{3} -{\left (5 \, a^{3} - 3 \, a b^{2}\right )} \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{4} + 2 \, \tan \left (d x + c\right )^{2} + 1}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

1/8*(3*(a^3 + a*b^2)*(d*x + c) - (4*b^3*tan(d*x + c)^2 - 3*(a^3 + a*b^2)*tan(d*x + c)^3 + 6*a^2*b + 2*b^3 - (5
*a^3 - 3*a*b^2)*tan(d*x + c))/(tan(d*x + c)^4 + 2*tan(d*x + c)^2 + 1))/d

________________________________________________________________________________________

Fricas [A]  time = 1.86007, size = 228, normalized size = 2.71 \begin{align*} -\frac{4 \, b^{3} \cos \left (d x + c\right )^{2} + 2 \,{\left (3 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right )^{4} - 3 \,{\left (a^{3} + a b^{2}\right )} d x -{\left (2 \,{\left (a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (a^{3} + a b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/8*(4*b^3*cos(d*x + c)^2 + 2*(3*a^2*b - b^3)*cos(d*x + c)^4 - 3*(a^3 + a*b^2)*d*x - (2*(a^3 - 3*a*b^2)*cos(d
*x + c)^3 + 3*(a^3 + a*b^2)*cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(a+b*tan(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 22.987, size = 3370, normalized size = 40.12 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

1/64*(9*pi*a*b^2*sgn(2*tan(d*x)^2*tan(c)^2 - 2)*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) -
2*tan(c))*tan(d*x)^4*tan(c)^4 + 24*a^3*d*x*tan(d*x)^4*tan(c)^4 + 24*a*b^2*d*x*tan(d*x)^4*tan(c)^4 + 9*pi*a*b^2
*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^4*tan(c)^4 + 18*pi*a*b^2*sgn
(2*tan(d*x)^2*tan(c)^2 - 2)*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^4
*tan(c)^2 + 18*pi*a*b^2*sgn(2*tan(d*x)^2*tan(c)^2 - 2)*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(
d*x) - 2*tan(c))*tan(d*x)^2*tan(c)^4 + 18*a*b^2*arctan((tan(d*x) + tan(c))/(tan(d*x)*tan(c) - 1))*tan(d*x)^4*t
an(c)^4 - 18*a*b^2*arctan(-(tan(d*x) - tan(c))/(tan(d*x)*tan(c) + 1))*tan(d*x)^4*tan(c)^4 + 48*a^3*d*x*tan(d*x
)^4*tan(c)^2 + 48*a*b^2*d*x*tan(d*x)^4*tan(c)^2 + 18*pi*a*b^2*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 +
 2*tan(d*x) - 2*tan(c))*tan(d*x)^4*tan(c)^2 + 48*a^3*d*x*tan(d*x)^2*tan(c)^4 + 48*a*b^2*d*x*tan(d*x)^2*tan(c)^
4 + 18*pi*a*b^2*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^2*tan(c)^4 -
30*a^2*b*tan(d*x)^4*tan(c)^4 - 6*b^3*tan(d*x)^4*tan(c)^4 + 9*pi*a*b^2*sgn(2*tan(d*x)^2*tan(c)^2 - 2)*sgn(-2*ta
n(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^4 + 36*pi*a*b^2*sgn(2*tan(d*x)^2*tan(c
)^2 - 2)*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^2*tan(c)^2 + 36*a*b^
2*arctan((tan(d*x) + tan(c))/(tan(d*x)*tan(c) - 1))*tan(d*x)^4*tan(c)^2 - 36*a*b^2*arctan(-(tan(d*x) - tan(c))
/(tan(d*x)*tan(c) + 1))*tan(d*x)^4*tan(c)^2 - 40*a^3*tan(d*x)^4*tan(c)^3 + 24*a*b^2*tan(d*x)^4*tan(c)^3 + 9*pi
*a*b^2*sgn(2*tan(d*x)^2*tan(c)^2 - 2)*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*
tan(c)^4 + 36*a*b^2*arctan((tan(d*x) + tan(c))/(tan(d*x)*tan(c) - 1))*tan(d*x)^2*tan(c)^4 - 36*a*b^2*arctan(-(
tan(d*x) - tan(c))/(tan(d*x)*tan(c) + 1))*tan(d*x)^2*tan(c)^4 - 40*a^3*tan(d*x)^3*tan(c)^4 + 24*a*b^2*tan(d*x)
^3*tan(c)^4 + 24*a^3*d*x*tan(d*x)^4 + 24*a*b^2*d*x*tan(d*x)^4 + 9*pi*a*b^2*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*
x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^4 + 96*a^3*d*x*tan(d*x)^2*tan(c)^2 + 96*a*b^2*d*x*tan(d*x)^2*tan
(c)^2 + 36*pi*a*b^2*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^2*tan(c)^
2 + 36*a^2*b*tan(d*x)^4*tan(c)^2 - 12*b^3*tan(d*x)^4*tan(c)^2 + 192*a^2*b*tan(d*x)^3*tan(c)^3 + 24*a^3*d*x*tan
(c)^4 + 24*a*b^2*d*x*tan(c)^4 + 9*pi*a*b^2*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan
(c))*tan(c)^4 + 36*a^2*b*tan(d*x)^2*tan(c)^4 - 12*b^3*tan(d*x)^2*tan(c)^4 + 18*pi*a*b^2*sgn(2*tan(d*x)^2*tan(c
)^2 - 2)*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^2 + 18*a*b^2*arctan(
(tan(d*x) + tan(c))/(tan(d*x)*tan(c) - 1))*tan(d*x)^4 - 18*a*b^2*arctan(-(tan(d*x) - tan(c))/(tan(d*x)*tan(c)
+ 1))*tan(d*x)^4 - 24*a^3*tan(d*x)^4*tan(c) - 24*a*b^2*tan(d*x)^4*tan(c) + 18*pi*a*b^2*sgn(2*tan(d*x)^2*tan(c)
^2 - 2)*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(c)^2 + 72*a*b^2*arctan((ta
n(d*x) + tan(c))/(tan(d*x)*tan(c) - 1))*tan(d*x)^2*tan(c)^2 - 72*a*b^2*arctan(-(tan(d*x) - tan(c))/(tan(d*x)*t
an(c) + 1))*tan(d*x)^2*tan(c)^2 + 48*a^3*tan(d*x)^3*tan(c)^2 - 144*a*b^2*tan(d*x)^3*tan(c)^2 + 48*a^3*tan(d*x)
^2*tan(c)^3 - 144*a*b^2*tan(d*x)^2*tan(c)^3 + 18*a*b^2*arctan((tan(d*x) + tan(c))/(tan(d*x)*tan(c) - 1))*tan(c
)^4 - 18*a*b^2*arctan(-(tan(d*x) - tan(c))/(tan(d*x)*tan(c) + 1))*tan(c)^4 - 24*a^3*tan(d*x)*tan(c)^4 - 24*a*b
^2*tan(d*x)*tan(c)^4 + 48*a^3*d*x*tan(d*x)^2 + 48*a*b^2*d*x*tan(d*x)^2 + 18*pi*a*b^2*sgn(-2*tan(d*x)^2*tan(c)
+ 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(d*x)^2 + 18*a^2*b*tan(d*x)^4 + 10*b^3*tan(d*x)^4 + 64*b^3*t
an(d*x)^3*tan(c) + 48*a^3*d*x*tan(c)^2 + 48*a*b^2*d*x*tan(c)^2 + 18*pi*a*b^2*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(
d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c))*tan(c)^2 - 216*a^2*b*tan(d*x)^2*tan(c)^2 + 72*b^3*tan(d*x)^2*tan(c)^2 +
 64*b^3*tan(d*x)*tan(c)^3 + 18*a^2*b*tan(c)^4 + 10*b^3*tan(c)^4 + 9*pi*a*b^2*sgn(2*tan(d*x)^2*tan(c)^2 - 2)*sg
n(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c)) + 36*a*b^2*arctan((tan(d*x) + tan(c))/(t
an(d*x)*tan(c) - 1))*tan(d*x)^2 - 36*a*b^2*arctan(-(tan(d*x) - tan(c))/(tan(d*x)*tan(c) + 1))*tan(d*x)^2 + 24*
a^3*tan(d*x)^3 + 24*a*b^2*tan(d*x)^3 - 48*a^3*tan(d*x)^2*tan(c) + 144*a*b^2*tan(d*x)^2*tan(c) + 36*a*b^2*arcta
n((tan(d*x) + tan(c))/(tan(d*x)*tan(c) - 1))*tan(c)^2 - 36*a*b^2*arctan(-(tan(d*x) - tan(c))/(tan(d*x)*tan(c)
+ 1))*tan(c)^2 - 48*a^3*tan(d*x)*tan(c)^2 + 144*a*b^2*tan(d*x)*tan(c)^2 + 24*a^3*tan(c)^3 + 24*a*b^2*tan(c)^3
+ 24*a^3*d*x + 24*a*b^2*d*x + 9*pi*a*b^2*sgn(-2*tan(d*x)^2*tan(c) + 2*tan(d*x)*tan(c)^2 + 2*tan(d*x) - 2*tan(c
)) + 36*a^2*b*tan(d*x)^2 - 12*b^3*tan(d*x)^2 + 192*a^2*b*tan(d*x)*tan(c) + 36*a^2*b*tan(c)^2 - 12*b^3*tan(c)^2
 + 18*a*b^2*arctan((tan(d*x) + tan(c))/(tan(d*x)*tan(c) - 1)) - 18*a*b^2*arctan(-(tan(d*x) - tan(c))/(tan(d*x)
*tan(c) + 1)) + 40*a^3*tan(d*x) - 24*a*b^2*tan(d*x) + 40*a^3*tan(c) - 24*a*b^2*tan(c) - 30*a^2*b - 6*b^3)/(d*t
an(d*x)^4*tan(c)^4 + 2*d*tan(d*x)^4*tan(c)^2 + 2*d*tan(d*x)^2*tan(c)^4 + d*tan(d*x)^4 + 4*d*tan(d*x)^2*tan(c)^
2 + d*tan(c)^4 + 2*d*tan(d*x)^2 + 2*d*tan(c)^2 + d)